博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Java_一致性哈希算法与Java实现
阅读量:6463 次
发布时间:2019-06-23

本文共 2327 字,大约阅读时间需要 7 分钟。

摘自:http://blog.csdn.net/wuhuan_wp/article/details/7010071

 

一致性哈希算法是分布式系统中常用的算法。比如,一个分布式的存储系统,要将数据存储到具体的节点上,如果采用普通的hash方法,将数据映射到具体的节点上,如key%N,key是数据的key,N是机器节点数,如果有一个机器加入或退出这个集群,则所有的数据映射都无效了,如果是持久化存储则要做数据迁移,如果是分布式缓存,则其他缓存就失效了。

    因此,引入了一致性哈希算法:

 

把数据用hash函数(如MD5),映射到一个很大的空间里,如图所示。数据的存储时,先得到一个hash值,对应到这个环中的每个位置,如k1对应到了图中所示的位置,然后沿顺时针找到一个机器节点B,将k1存储到B这个节点中。

如果B节点宕机了,则B上的数据就会落到C节点上,如下图所示:

 

这样,只会影响C节点,对其他的节点A,D的数据不会造成影响。然而,这又会造成一个“雪崩”的情况,即C节点由于承担了B节点的数据,所以C节点的负载会变高,C节点很容易也宕机,这样依次下去,这样造成整个集群都挂了。

       为此,引入了“虚拟节点”的概念:即把想象在这个环上有很多“虚拟节点”,数据的存储是沿着环的顺时针方向找一个虚拟节点,每个虚拟节点都会关联到一个真实节点,如下图所使用:

图中的A1、A2、B1、B2、C1、C2、D1、D2都是虚拟节点,机器A负载存储A1、A2的数据,机器B负载存储B1、B2的数据,机器C负载存储C1、C2的数据。由于这些虚拟节点数量很多,均匀分布,因此不会造成“雪崩”现象。

 

Java实现:

[java]   
 
    1. public class Shard<S> { // S类封装了机器节点的信息 ,如name、password、ip、port等  
    2.   
    3.     private TreeMap<Long, S> nodes; // 虚拟节点  
    4.     private List<S> shards; // 真实机器节点  
    5.     private final int NODE_NUM = 100; // 每个机器节点关联的虚拟节点个数  
    6.   
    7.     public Shard(List<S> shards) {  
    8.         super();  
    9.         this.shards = shards;  
    10.         init();  
    11.     }  
    12.   
    13.     private void init() { // 初始化一致性hash环  
    14.         nodes = new TreeMap<Long, S>();  
    15.         for (int i = 0; i != shards.size(); ++i) { // 每个真实机器节点都需要关联虚拟节点  
    16.             final S shardInfo = shards.get(i);  
    17.   
    18.             for (int n = 0; n < NODE_NUM; n++)  
    19.                 // 一个真实机器节点关联NODE_NUM个虚拟节点  
    20.                 nodes.put(hash("SHARD-" + i + "-NODE-" + n), shardInfo);  
    21.   
    22.         }  
    23.     }  
    24.   
    25.     public S getShardInfo(String key) {  
    26.         SortedMap<Long, S> tail = nodes.tailMap(hash(key)); // 沿环的顺时针找到一个虚拟节点  
    27.         if (tail.size() == 0) {  
    28.             return nodes.get(nodes.firstKey());  
    29.         }  
    30.         return tail.get(tail.firstKey()); // 返回该虚拟节点对应的真实机器节点的信息  
    31.     }  
    32.   
    33.     /** 
    34.      *  MurMurHash算法,是非加密HASH算法,性能很高, 
    35.      *  比传统的CRC32,MD5,SHA-1(这两个算法都是加密HASH算法,复杂度本身就很高,带来的性能上的损害也不可避免) 
    36.      *  等HASH算法要快很多,而且据说这个算法的碰撞率很低. 
    37.      *  http://murmurhash.googlepages.com/ 
    38.      */  
    39.     private Long hash(String key) {  
    40.           
    41.         ByteBuffer buf = ByteBuffer.wrap(key.getBytes());  
    42.         int seed = 0x1234ABCD;  
    43.           
    44.         ByteOrder byteOrder = buf.order();  
    45.         buf.order(ByteOrder.LITTLE_ENDIAN);  
    46.   
    47.         long m = 0xc6a4a7935bd1e995L;  
    48.         int r = 47;  
    49.   
    50.         long h = seed ^ (buf.remaining() * m);  
    51.   
    52.         long k;  
    53.         while (buf.remaining() >= 8) {  
    54.             k = buf.getLong();  
    55.   
    56.             k *= m;  
    57.             k ^= k >>> r;  
    58.             k *= m;  
    59.   
    60.             h ^= k;  
    61.             h *= m;  
    62.         }  
    63.   
    64.         if (buf.remaining() > 0) {  
    65.             ByteBuffer finish = ByteBuffer.allocate(8).order(  
    66.                     ByteOrder.LITTLE_ENDIAN);  
    67.             // for big-endian version, do this first:  
    68.             // finish.position(8-buf.remaining());  
    69.             finish.put(buf).rewind();  
    70.             h ^= finish.getLong();  
    71.             h *= m;  
    72.         }  
    73.   
    74.         h ^= h >>> r;  
    75.         h *= m;  
    76.         h ^= h >>> r;  
    77.   
    78.         buf.order(byteOrder);  
    79.         return h;  
    80.     }  
    81.   
    82. }  
你可能感兴趣的文章
服务器常用的状态码及其对应的含义如下
查看>>
zoom和transform:scale的区别
查看>>
幸福框架:可扩展的、动态的、万能的 编号生成器
查看>>
黄聪:PHP 防护XSS,SQL,代码执行,文件包含等多种高危漏洞
查看>>
svn status 显示 ~xx
查看>>
常用HiveQL总结
查看>>
[转]使用Visual Studio Code开发Asp.Net Core WebApi学习笔记(三)-- Logger
查看>>
POJ 3311 Hie with the Pie(状压DP + Floyd)
查看>>
HDU 1402 A * B Problem Plus FFT
查看>>
[CareerCup] 17.3 Factorial Trailing Zeros 求阶乘末尾零的个数
查看>>
Security updates and resources
查看>>
深入理解JavaScript系列(25):设计模式之单例模式
查看>>
DNS为什么通常都会设置为14.114.114.114
查看>>
给定一个序列,判断该序列是否为二叉树查找树的后序遍历序列
查看>>
Sqoop架构(四)
查看>>
golang copy函数
查看>>
《你有多少问题要请示》精华集粹
查看>>
深度 | 机器学习敲门砖:任何人都能看懂的TensorFlow介绍【转】
查看>>
leveldb学习:DBimpl
查看>>
MySQL存储引擎--MYSIAM和INNODB引擎区别
查看>>